Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2902-2911, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38166373

RESUMO

Monolayer transition metal dichalcogenides have strong intracovalent bonding. When stacked in multilayers, however, weak van der Waals interactions dominate interlayer mechanical coupling and, thus, influence their lattice vibrations. This study presents the frequency evolution of interlayer phonons in twisted WS2 bilayers, highly subject to the twist angle. The twist angle between the layers is controlled to modulate the spacing between the layers, which, in turn, affects the interlayer coupling that is probed by Raman spectroscopy. The shifts of high-frequency E2g1 (Γ) and A1g (Γ) phonon modes and their frequency separations are dependent on the twist angle, reflecting the correlation between the interlayer mechanical coupling and twist angle. In this work, we fabricated large-area, twisted bilayer WS2 with a clean interface with controlled twist angles. Polarized Raman spectroscopy identified new interlayer modes, which were not previously reported, depending on the twist angle. The appearance of breathing modes in Raman phonon spectra provides evidence of strong interlayer coupling in bilayer structures. We confirm that the twist angle can alter the exciton and trion dynamics of bilayers as indicated by the photoluminescence peak shift. These large-area controlled twist angle samples have practical applications in optoelectronic device fabrication and twistronics.

2.
Nano Lett ; 23(15): 7150-7156, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37477493

RESUMO

Alkali metals have low optical losses in the visible to near-infrared (NIR) compared with noble metals. However, their high reactivity prohibits the exploration of their optical properties. Recently sodium (Na) has been experimentally demonstrated as a low-loss plasmonic material. Here we report on a thermo-assisted nanoscale embossing (TANE) technique for fabricating plasmonic nanostructures from pure potassium (K) and NaK liquid alloys. We show high-quality-factor resonances from K as narrow as 15 nm in the NIR, which we attribute to the high material quality and low optical loss. We further demonstrate liquid Na-K plasmonics by exploiting the Na-K eutectic phase diagram. Our study expands the material library for alkali metal plasmonics and liquid plasmonics, potentially enabling a range of new material platforms for active metamaterials and photonic devices.

3.
Nano Lett ; 23(2): 469-475, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36630601

RESUMO

Sodium (Na) is predicted to be an ideal plasmonic material with ultralow optical loss across visible to near-infrared (NIR). However, there has been limited research on Na plasmonics. Here we develop a scalable fabrication method for Na nanostructures by combining phase-shift photolithography and a thermo-assisted spin-coating process. Using this method, we fabricated Na nanopit arrays with varying periodicities (300-600 nm) and with tunable surface plasmon polariton (SPP) modes spanning visible to NIR. We achieved SPP resonances as narrow as 9.3 nm. In addition, Na nanostructures showed line width narrowing from visible toward NIR, showing their prospect operating in the NIR. To address the challenges associated with the high reactivity of Na, we designed a simple encapsulation strategy and stabilized the Na nanostructures in ambient conditions for more than two months. As a low-cost and low-loss plasmonic material, Na offers a competitive option for nanophotonic devices and plasmon-enhanced applications.

4.
ACS Appl Mater Interfaces ; 9(44): 38943-38949, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043771

RESUMO

Gold hollow nanodomes arranged in hexagonal lattices support surface plasmon polaritons (SPPs) propagating at air-Au interface. The cross-sectional heights of the continuous and hierarchical hexagonal nanodome arrays can be altered by a simple thermal treatment, and the change in nanodome size leads to a significant linewidth narrowing of plasmon resonance because of reduced scattering loss. Taking the variation in the SPP intensities into account, the surface modulation depth is found to be around 100 nm for achieving a longer propagation length of SPP.

5.
Nanotechnology ; 28(29): 295301, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28594335

RESUMO

Molybdenum disulfide (MoS2), as one of the atomically thin two-dimensional transition metal dichalcogenides has novel layer-dependent optical and electronic properties, which make it competitive for potential applications in optoelectronics. Here, we report chemical vapor deposition growth of vertically-standing and planar spiral MoS2 nanosheets. These vertical spiral MoS2 nanosheets are formed by the compression between planar spiral MoS2 in a close proximity. Both structures have a polytype 3R stacking with broken inversion symmetry, exhibiting strong second and third harmonic generations.

6.
Phys Chem Chem Phys ; 19(18): 11111-11119, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28425557

RESUMO

This paper reports designing a novel single composition blue/red color illuminating phosphor followed by fabricating "smart" agricultural/horticultural LED lighting. Color-tunable Eu2+/Mn2+ co-activated alkaline earth phosphates, Na(Sr,Ba)PO4 and Ca3Mg3(PO4)4, are considered, and the stable doping sites for the corresponding activators are identified by using first-principle DFT calculations. We can realize the designated color purity with stable thermal quenching preserved luminescence behavior is induced by the Eu2+ center positioned at different coordination states with intermixed Sr2+/Ba2+ sites in Na(Sr,Ba)PO4 hosts. Moreover, we demonstrate that the resultant LED lighting adopting the proposed novel phosphor composition stimulates the enhanced photosynthesis reaction for indoor hydroponics plants, such as oats and onions, which is superior to the narrow line emission band induced by the mixture of conventional red/green/blue LEDs. Thus, using the color-tunable single composition luminescent material may produce an innovative energy-efficient artificial lighting for indoor plant growth.


Assuntos
Európio/química , Iluminação/instrumentação , Substâncias Luminescentes/química , Manganês/química , Fosfatos/química , Luminescência , Substâncias Luminescentes/síntese química , Metais Alcalinoterrosos/química , Fosfatos/síntese química , Desenvolvimento Vegetal/efeitos da radiação
7.
ACS Appl Mater Interfaces ; 8(32): 20516-21, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27144402

RESUMO

Hollow metallic nanodome structures were fabricated using anodized aluminum oxide (AAO) nanopores as deposition and sacrificial templates. Individual Au nanodomes inherit the unique shapes of the well-defined AAO membranes whose pedestal cells become square or hexagonal lattices with hemispheres in close proximity. Minimal contact between the hollow nanodomes and the glass substrate provide an identical dielectric medium across the film. The nanodome Au films support surface plasmon polaritons (SPPs) of strong air-Au and weak Au-glass modes in the light transmission dispersions. The mode crossings of distinct SPPs exhibit characteristic energy gaps, which depend on the periodic geometries of the nanostructures.

8.
Nat Nanotechnol ; 8(7): 506-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23770807

RESUMO

Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement. In contrast, plasmonic nanolasers can support ultrafast dynamics and ultrasmall mode volumes. However, because of the large momentum mismatch between their nanolocalized lasing fields and free-space light, they suffer from large radiative losses and lack beam directionality. Here, we report lasing action from band-edge lattice plasmons in arrays of plasmonic nanocavities in a homogeneous dielectric environment. We find that optically pumped, two-dimensional arrays of plasmonic Au or Ag nanoparticles surrounded by an organic gain medium show directional beam emission (divergence angle <1.5° and linewidth <1.3 nm) characteristic of lasing action in the far-field, and behave as arrays of nanoscale light sources in the near-field. Using a semi-quantum electromagnetic approach to simulate the active optical responses, we show that lasing is achieved through stimulated energy transfer from the gain to the band-edge lattice plasmons in the deep subwavelength vicinity of the individual nanoparticles. Using femtosecond-transient absorption spectroscopy, we verified that lattice plasmons in plasmonic nanoparticle arrays could reach a 200-fold enhancement of the spontaneous emission rate of the dye because of their large local density of optical states.

9.
Nano Lett ; 12(11): 5769-74, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23013283

RESUMO

Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain material. The extreme field compression, and thus ultrasmall mode volume, within the bowtie gaps produced laser oscillations at the localized plasmon resonance gap mode of the 3D bowties. Transient absorption measurements confirmed ultrafast resonant energy transfer between photoexcited dye molecules and gap plasmons on the picosecond time scale. These plasmonic nanolasers are anticipated to be readily integrated into Si-based photonic devices, all-optical circuits, and nanoscale biosensors.


Assuntos
Técnicas Biossensoriais , Lasers , Absorção , Campos Eletromagnéticos , Cinética , Teste de Materiais , Nanopartículas Metálicas/química , Microscopia Eletrônica de Varredura/métodos , Nanoestruturas/química , Nanotecnologia/métodos , Silício/química , Espectrofotometria Infravermelho/métodos , Ressonância de Plasmônio de Superfície , Temperatura
10.
Nano Lett ; 12(8): 4324-8, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22823536

RESUMO

This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal.

11.
Opt Express ; 20(13): 14284-91, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714490

RESUMO

This paper reports the experimental and theoretical investigation of the Talbot effect beyond the paraxial limit at optical frequencies. Au hole array films with periodicity a(0) comparable to the wavelength of coherent illumination λ were used to study the non-paraxial Talbot effect. Significant differences from the paraxial (classical) Talbot effect were observed. Depending on the ratio of a(0)/λ, the interference pattern in the direction perpendicular to the hole array was not necessarily periodic, and the self-image distances deviated from the paraxial Talbot distances. Defects within the hole array film or above the film were healed in the self-images as the light propagated from the surface.


Assuntos
Luz , Modelos Teóricos , Refratometria/métodos , Espalhamento de Radiação , Simulação por Computador
12.
ACS Nano ; 6(2): 1786-94, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22276641

RESUMO

This paper reports the fabrication and characterization of three-dimensional (3D) multiscale Au particles with different aspect ratios. Increasing the length of the particles resulted in excitation of a longitudinal mode and two different transverse modes having different multipolar orders. The multipolar orders increased for both longitudinal and transverse modes as the aspect ratio increased. Finite-difference time-domain calculations revealed that the structural asymmetry of the 3D anisotropic particles were the reason for the two distinct transverse plasmon resonances. When the 3D structural change occurred at the ends of the multiscale particle, however, the optical response showed two resonances in the longitudinal direction and only a single resonance in the transverse direction.

13.
Nano Lett ; 12(1): 269-74, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149352

RESUMO

This paper reports that arrays of three-dimensional (3D), bowtie-shaped Au nanoparticle dimers can exhibit extremely high nonlinear absorption. Near-field interactions across the gap of the 3D bowties at the localized surface plasmon resonance wavelengths resulted in an increase of more than 4 orders of magnitude in local field intensity. The imaginary part of the third-order nonlinear susceptibility (Im χ((3))) for the 3D bowtie arrays embedded in a dielectric material was measured to be 10(-4) esu, more than 2 orders of magnitude higher than reported for other metal nanoparticle-dielectric composites. Moreover, 3D dimers with increased nanoscale structure (such as folding) exhibited increased optical nonlinearity. These 3D nanoantennas can be used as critical elements for nanoscale nonlinear optical devices.


Assuntos
Luz , Nanoestruturas/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Nanoestruturas/ultraestrutura , Dinâmica não Linear , Tamanho da Partícula , Espalhamento de Radiação
14.
Nano Lett ; 10(8): 3173-8, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698633

RESUMO

This paper describes three-dimensional (3D) nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission, which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications.


Assuntos
Nanoestruturas , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...